
Dispatcher Algorithm for Effective Resource
Utilization of Server using Volunteer Computing

: A Case Study

Jayaram C V, Rampur srinath
Dept.of PGCEA, The National Institute of Engg., Mysore, Karnataka, INDIA,

Abstract -Data partitioning and load balancing are important
components of parallel computations. Many different
partitioning strategies have been developed, with great
effectiveness in parallel applications. But the problem of load-
balancing the server is not yet solved completely. New
applications and architectures require new partitioning features.
Existing algorithms must be enhanced to support more complex
applications. This paper discusses the design and
implementation of the dispatcher algorithm using volunteer
computing for effective utilization of the resource of server. Also
presents a case study which examines the implementation of the
dispatcher algorithm, by a server, A proper scheduling and
efficient load balancing across the network can lead to improve
overall system performance and a lower turn-around time for
individual tasks.

Keywords: Volunteer Computing, load Balancing, resource
utilization, Dispatch Algorithm, Task Scheduling.

1. INTRODUCTION
The term volunteer computing was coined by Luis

F.G.Sarmenta, the developer of Bayanihan [1]. The first
volunteer computing project on the internet was GIMPS [2],
the Great Internet Mersenne Prime Search, which started in
January 1996. Volunteer computing is a form of distributed
computing in which the general public volunteers processing
and storage resources to computing projects. Compared to
other types of high-performance computing, volunteer
computing has a high degree of diversity. The volunteered
computers vary widely in terms of software and hardware
type, speed, availability, reliability and network connectivity.
Similarly, the applications and jobs vary widely in terms of
their resource requirements and completion time constraints.
Volunteering computing functionally combines globally
distributed computers and information systems for creating a
universal source of computing power and information. A
volunteer can offer a resource balancing effect by scheduling
tasks at machines with low utilization.

Volunteer computing systems, such as
SETI@home[7], distributed.net [5], and a rapidly increasing
number of other projects [8] for a good listing of different
volunteer computing-type projects), are already
demonstrating this great potential of volunteer computing. A
large part of this success can be attributed to the relative ease
with which users are able to join their systems. To volunteer,

a user only needs to download an executable file for his own
machine architecture and operating system. Install and run
the software on the volunteer machines.

2. BACKGROUND

Load balancing is a technique to enhance resources,
utilizing parallelism, exploiting throughput improvisation,
and to cut response time through an appropriate distribution
of the applications [3]. To minimize the decision time is one
of the objectives for load balancing which has yet not been
achieved. Proper task scheduling is the only efficient way to
guarantee that submitted task are completed reliably and
efficiently in case of process failure, processor failure, node
crash, network failure, system performance degradation,
communication delay, addition of new machines
dynamically even though a resource failure occurs which
changes the distributed environment [4]. Generally, load
balancing mechanisms can be broadly categorized as
centralized or decentralized, dynamic or static, and periodic
or non-periodic [5]. All load balancing methods are designed
such as, to spread the load on resources equally and
maximize their utilization while minimizing the total task
execution time. Selecting the optimal set of tasks for
transferring has a significant role on the efficiency of the load
balancing method as well as network resource utilization.
This problem has been neglected by researchers in most of
previous contributions on load balancing, either in distributed
systems or in the network environment [6].There are different
types of load balancing policies, strategies and categories
which give different results to users in different environments
or under different circumstances. Load balancing problem has
been discussed in traditional distributed systems literature for
more than two decades and various algorithms, strategies and
policies have been proposed, classified and implemented [9].
Load balancing algorithms can be classified into two
categories, static and dynamic.

Static Algorithms

Static load balancing algorithms allocate tasks of a
parallel program to workstations based on either the load at
the time nodes are allocated to some task, or based on
average load of workstation cluster. The static load balancing
is as shown in figure 1

Jayaram C V et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4465 - 4468

4465

Figure 1 Static Load Balancing [9]

The decisions related to load balance are made at
compile time when resource requirements are estimated. The
advantage in this sort of algorithm is the simplicity in terms
of both implementation as well as overhead, since there is no
need to constantly monitor the workstations for performance
statistics [10].

However, static algorithms only work well, when
there is not much variation in the load on the workstations.
Clearly, static load balancing algorithms aren’t well suited to
a grid environment, where loads may vary significantly at
various times. A few static load balancing techniques are
[19]:
 Round-Robin Algorithm: tasks are passed to processes in

a sequential order, when the last process has received a
task the schedule continues with the first process (a new
round) [12].

 Randomized Algorithm: allocation of tasks to processes
is random [13].

Drawbacks of Static Load Balancing Algorithms
 It is very difficult to estimate a-priori (in an accurate

way) the execution time of various parts of a program.
 Sometimes there are communication delays that vary in

an uncontrollable way.
 For some problems the number of steps to reach a

solution is not known in advance.
Dynamic Algorithms

According to the name dynamic load balancing
algorithms takes decision at run time, and use current or
recent load information when making distribution decisions.
In grid environment with dynamic load balancing
allocate/reallocate resources at runtime based on no a priori
task information, which determine when and which task has
to be migrated [9]. The Dynamic load balancing is as shown
in figure 2

Figure 2 Dynamic Load Balancing [9]

After using effectively dynamic load balancing
algorithms can provide a significant improvement in
performance over static algorithms. But this comes at the
additional cost of collecting and maintaining load
information, so it is important to keep these overheads within
reasonable limits [14].
Load balancing policies

Load balancing algorithms can be based on many
policies; some important policies are defined below [15].

 Information policy: This policy specifies what
workload information should be collected, when it is
to be collected and from where.

 Triggering policy: This policy determines the
appropriate period to start a load balancing
operation.

 Resource type policy: This policy classifies a
resource as server or receiver of tasks according to
its availability status.

 Location policy: This policy uses the results of the
resource type policy to find a suitable partner for a
server or receiver.

 Selection policy: This policy defines the tasks that
should be migrated from overloaded resources
(source) to most idle resources (receiver).
The main objective of load balancing methods is to

speed up the execution of applications on resources whose
workload varies at run time in unpredictable way. Hence it is
significant to define metrics to measure the resource
workload. Every dynamic load balancing method must
estimate the timely workload information of each resource
[16]. This is the key information in a load balancing system
where responses are given to following questions
 How to measure resource workload?
 What criteria are retaining to define this workload?
 How to avoid the negative effects of resources

dynamicity on the workload?
 How to take into account the resources heterogeneity in

order to obtain an instantaneous average workload
representative of the system?

Success of a load balancing algorithm depends upon
stability of the number of messages (small overhead), support
environment, low cost update of the workload, and short
mean response time which is a significant measurement for a
user. It is also essential to measure the communication cost
induced by a load balancing operation, but to achieve all
these, anyone would have to face great challenge in grid
environment [16].

3. PROPOSED METHOD

The overall architecture is as shown in figure 3,
According to the characteristics of applications, we propose
an algorithm which dispatches the request by referencing
CPU computing power. The main effort of this dispatching
algorithm is to decide which server a TCP connection is
going to be connected with. It is the place where dispatching
decisions are made. Once a server is chosen and the

Jayaram C V et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4465 - 4468

4466

connection is constructed, all remote invocations go through
this link are served by this server. Here we can have the
channel objects periodically discard connections in purpose
for the reconstruction of connections to less load servers. The
network processor records the IP and port information of the
client and the selected Server in the TCP connection table
called TCT for each constructed connection.

Figure 3Overall Architecture

 The remote request packets with the same source IP,
the same source port, and the same destination port will be
directed to the same destination IP according to TCT. The
response packets from the servers are also directed to the
correct clients by this connection table. The destination port
mentioned TCT is used to identify remoting services
Different services distributed and then go to the different
ports in our customized client channel objects. Dispatching
algorithm is to find the least load server for dispatching.
Different scheduling methods can be plugged in for this step.
In the following, we propose a method to schedule tasks to
the server minimizing the estimated task time.

Algorithm:
Step 1: TCP Configurations
Step 2: Check the TCP connection table entry
Step 3: Check if the incoming packets is in the range of
stateful service.
Step 4: Check the packet is singleton or client activated
method.
Step 5: Directs the connection construction request to the
least load server.
Step 6: If the incoming method is indeed a stateful request,
session table is created if the New stateful service.
Step 7: Checking for expiration of the session.
Step 8: Algorithm does TCP header rewriting to forward
packets to and from the intended server of that connection.

Step1. Gets the IP address of system and wait for the
client request in port number 8002. Step 2 of Algorithm does
the checking to see if the incoming packet is already in a TCT
entry. In addition, with the destination port plus the IP and
port information of the client, we can construct a session
table ST. ST is then used to track existing sessions for stateful
services. If the network processor finds that no TCP
connection exists for the incoming packet and the destination
port shows that it belongs to a stateful service, it will then
look up ST to find out the previous assigned server for this
service. Step 3 checks if the incoming packet is in the range
of stateful services. Step 4 checks if the incoming packet is a
singleton or a client-activated method. Note that there are
three kinds of methods in .Net remoting.

 Single call is stateless
 stateful methods include singleton
 Client-activated methods.

Our scheduling policy fully supports these three
semantics for .Net methods. A time field is also kept in ST to
determine the expiration of a session. Step 5 directs the
connection construction request to least load servers. Once
the least server is found, Step 6 checks if the incoming
method is indeed a stateful request. A ST will be created if
this is a new stateful request. Step 7 does the checking for the
expiration of a session. The network processor can also
invalidate the content in TCT and ST on purpose in order to
reallocate stateful services to new servers for load-balancing
issues, the Remoting proxy in the client side will detect a
network failure exception and then can try to construct a new
TCP connection to the backend. Finally, the algorithm does
TCP header rewriting to forward packets to and from the
intended server of that connection.

4. A CASE STUDY
Description: The main aim of this application is to
effectively utilize the server resource on the network. The
application consists of 3 main modules, Server, Client and a
Volunteer. This application contains mainly to perform the
operation of Watermarking effectively and with faster
performance. The function to be performed will be sent to
server and in turn the server sends it to volunteers. Depending
upon the time taken for the execution of the task by the
volunteers, the server allots the task to perform. Here the
server uses Dispatching Algorithm to perform the task.

5. EXPERIMENTAL RESULTS

 The experiment is conducted to perform 20 tasks
distributed in three different scenarios, first is client request
to watermark image with text, the server reads the image and
waits for the text. As soon as the server receives text message
to water mark the server looks for a volunteer RAM
utilization and time required will be calculated. Then server
dispatches the task on run time to volunteer one or two
depends on the RAM resource utilization. Second scenario is
client request to watermark image on image, the server reads
the target image and waits for the image. Third scenario is

Jayaram C V et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4465 - 4468

4467

client request to watermark image with image and text and
server reads image and waits for image and text. The
experimental result is as shown in Table 1.

V
ol

u
n

te
er

 Time taken (ms)
to perform
Watermark

image with text

Time taken (ms)
to perform
Watermark

image with image

Time taken (ms) to
perform

Watermark image
with image and

text

1 0.171450770489879 0.153182824890442 0.0434275289545075

2 0.02139359283702 0.0584792353381 0.1256243217891987

Table 1: Time Taken to complete the tasks by each volunteers

6. CONCLUSION
This paper describes aspects of volunteer computing

and introduces numerous concepts which illustrate its grand
capabilities. Volunteer Computing is definitely a promising
tendency to solve high demanding applications and its related
problems. Main objective of the volunteer computing
environment is to balance load and achieve high
performance. Dynamic nature and complexity of network
make load balancing very complex and vulnerable to faults.
To maintain entire load of nodes is very hard due to dynamic
nature of resources in a network environment. There are a
number of factors, which can affect the server performance
like load balancing, heterogeneity of resources and resource
sharing in the network environment. It focuses on load
balancing and presents factors due to which load balancing is
initiated, compares existing load balancing algorithms and
finally proposes an efficient dispatcher algorithm for network
environment.

REFERENCES
[1] Y.Lan, T.Yu (1995) “A Dynamic Central Scheduler Load-Balancing

Mechanism”, Proc. 14th IEEE Conf. on Computers and
Communication, Tokyo, Japan, pp.734-740.

[2] Guy Bernard,& Michel Simatic “A Decentralized and Efficient
Algorithm for Load Sharing in Networks of Workstations

[3]. S.Rips “Load Balancing Support for Grid-enabled Applications” NIC
Series, Vol. 33, ISBN 3-00- 017352-8, pp. 97-104, 2006.

[4].Belabbas Yagoubi and Yahya Slimani, “Dynamic Load Balancing
Strategy for Grid Computing” Proceedings of World Academy of
Science, Engineering and Technology Volume 13 May 2006 ISSN
1307-6884.

[5]. Porter, Michael; Mark Kramer. "The Link between Competitive
Advantage and Corporate Social Responsibility". Harvard Business
Review

[6]. Javier Bustos Jimenez, Robin Hood “An Active Objects Load Balancing
Mechanism for Intranet”

[7] SETI@home. SETI@home home page. URL:
http://setiathome.ssl.berkeley.edu.

[8] K. Pearson. Internet-based Distributed Computing Projects. URL:
http://www.nyx.net/˜kpearson/distrib.html

[9].Srikumar Venugopal, Rajkumar Buyya and Ramamohanarao Kotagiri “A
Taxonomy of Data Grids for Distributed Data Sharing, Management
and Processing” Grid Computing and Distributed Systems Laboratory,
Department of Computer Science and Software Engineering, The
University of Melbourne, Australia Email:fsrikumar, raj,
raog@cs.mu.oz.au.

[10].Yuan-Jin Wen; Sheng-De Wang Department of Electrical Engineering,
Division of Computer Science, National Taiwan University, Taipei,
Taiwan “Minimizing Migration on Grid Environments: An Experience
on Sun Grid Engine” Journal of Information Technology and
Applications vol. 1 No. 4 March, 2007, pp. 297-30.

[11].Belabbas Yagoubi and Yahya Slimani, “Dynamic Load Balancing
Strategy for Grid Computing” Proceedings of World Academy of
Science, Engineering and Technology Volume 13 May 2006 ISSN
1307-6884.

[12].Jorge R. Ramos Vernon Rego, Department of Computer Sciences
Purdue University West Lafayette, IN 47907, U.S.A., Janche Sang,
Department of Computer and Info. Science Cleveland State University
Cleveland, OH 44139, U.S.A “An Improved Computational Algorithm
for Round-Robin Service” Proceedings of the 2003 Winter Simulation
Conference

[13].Panos M. Pardalos, L.Pitsoulis1, T. Mavridou, and Mauricio G.C.
Resende, “Parallel Search for Combinatorial Optimization: Genetic
Algorithms, Simulated Annealing, Tabu Search and GRASP” Center
for Applied Optimization and Department of Industrial and Systems
Engineering, University of Florida,USA AT&T Bell Laboratories,USA.

[14].Shahzad Malik, “Dynamic Load Balancing in a Network of
Workstations”, 95.515F Research Report, November 29, 2000.

[15].Kai Lu, Riky Subrata and Albert Y. Zomaya, Networks & Systems Lab,
School of Information Technologies, University of Sydney “An
Efficient Load Balancing Algorithm for Heterogeneous Grid Systems
Considering Desirability of Grid Sites”.

[16]. http://www.mersenne.org/”

Jayaram C V et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012, 4465 - 4468

4468

